查看: 7404|回复: 13
收起左侧

cpu基础知识!

[复制链接]
睡醒了
发表于 2007-4-27 21:49:24 | 显示全部楼层 |阅读模式
CPU是英语“Central Processing Unit/中央处理器”的缩写,CPU一般由逻辑运算单元、控制单元和存储单元组成。在逻辑运算和控制单元中包括一些寄存器,这些寄存器用于CPU在处理数据过程中数据的暂时保存。
  CPU主要的性能指标有:
主频
  即CPU的时钟频率(CPU Clock Speed),这是我们最关心的,我们所说的233、300等就是指它,一般说来,主频越高,CPU的速度就越快,整机的就越高。(注意英特尔的cpu追求主频,而AMD的倍频要比同样产品低。个人认为外频才能真正的体现出速度来
1、适用类型
  “CPU 适用类型”是指该处理器所适用的应用类型,针对不同用户的不同需求、不同应用范围,CPU 被设计成各不相同的类型,即分为嵌入式和通用式、微控制式。嵌入式 CPU 主要用于运行面向特定领域的专用程序,配备轻量级操作系统,其应用极其广泛,像移动电话、DVD、机顶盒等都是使用嵌入式 CPU。微控制式 CPU 主要用于汽车空调、自动机械等自控设备领域。而通用式 CPU 追求高性能,主要用于高性能个人计算机系统(即 PC 台式机)、服务器(工作站)以及笔记本三种。
  台式机的 CPU,就是平常大部分场合所提到的应用于 PC 的 CPU,平常所说 Intel 的奔腾4、赛扬、AMD 的 AthlonXP 等等,都属于此类 CPU。
  应用于服务器和工作站上的 CPU,因其针对的应用范围,所以此类 CPU 在稳定性、处理速度、同时处理任务的数量等方面的要求都要高于单机 CPU。其中服务器(工作站)CPU 的高可靠性是普通 CPU 所无法比拟的,因为大多数的服务器都要满足每天 24 小时、每周 7 天的满负荷工作要求。由于服务器(工作站)数据处理量很大,需要采用多 CPU 并行处理结构,即一台服务器中安装 2、4、8 等多个 CPU,需要注意的是,并行结构需要的 CPU 必须为偶数个。对于服务器而言,多处理器可用于数据库处理等高负荷高速度应用;而对于工作站,多处理器系统则可以用于三维图形制作和动画文件编码等单处理器无法实现的高处理速度应用。另外,许多 CPU 的新技术,都是率先开发应用于服务器(工作站)CPU 中。
  在最早期的 CPU 设计中,并没有单独的笔记本 CPU,均采用与台式机的 CPU。后来,随着笔记本电脑的散热和体积成为发展的瓶颈时,才逐渐生产出笔记本专用 CPU。受笔记本内部空间、散热和电池容量的限制,笔记本 CPU 在外观尺寸、功耗(耗电量)方面都有很高的要求。笔记本电池性能是十分重要的性能,CPU 的功耗大小,对电池使用时间有着最直接的影响。所以,为了降低功耗,笔记本处理器中都包含有一些节能技术。在无线网络将要获得更多应用的现在,笔记本 CPU 还增加了一些定制的针对无线通信的功能。
  服务器 CPU 和笔记本 CPU,都包含有各自独特的专有技术,都是为了更好的在各自的工作条件下发挥出更好的性能。比如,服务器的多 CPU 并行处理,以及多核多线程技术;笔记本 CPU 的 SpeedStep(可自动调整工作频率及电压)节能技术。
  封装方式,三者也有不同之处。笔记本 CPU 是三者中最小最薄的一种,因为笔记本处理器的体积需要更小,耐高温的性能要更佳,因此在制造工艺上要求也就更高。
  三者在稳定性中,以服务器 CPU 最强,因为其设计时就要求有极低的错误率,部分产品甚至要求全年满负荷工作,故障时间不能超过 5 分钟。
  台式机 CPU 工作电压和功耗都高于笔记本 CPU,通常台式机 CPU 的测试温度上限为 75 摄氏度,超过 75 摄氏度,工作就会不稳定,甚至出现问题;而笔记本 CPU 的测试温度上限为 100 摄氏度;服务器 CPU 需要长时间的稳定工作,在散热方面的要求就更高了。
  在选购整机尤其是有特定功能的计算机(如笔记本、服务器等)时,需要注意 CPU 的适用类型,选用不适合的 CPU 类型,一方面会影响整机的系统性能,另一方面会加大计算机的维护成本。单独选购 CPU 时,也要注意 CPU 的适用类型,建议按照具体应用的需求来购买 CPU。

[ 本帖最后由 睡醒了 于 2007-4-27 21:55 编辑 ]

评分

参与人数 1经验 +2 收起 理由
taiyang143 + 2 辛苦了 :)

查看全部评分

睡醒了
 楼主| 发表于 2007-4-27 21:50:14 | 显示全部楼层
1.主频

  主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。

  当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

2.外频

  外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
睡醒了
 楼主| 发表于 2007-4-27 21:50:41 | 显示全部楼层
3.前端总线(FSB)频率

  前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。

4、CPU的位和字长

  位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。

  字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
睡醒了
 楼主| 发表于 2007-4-27 21:51:04 | 显示全部楼层
5.倍频系数

  倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。

6.缓存

  缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。

  L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
睡醒了
 楼主| 发表于 2007-4-27 21:51:37 | 显示全部楼层
7.CPU扩展指令集

  CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。

8.CPU内核和I/O工作电压

  从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。

9.制造工艺

  制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。
睡醒了
 楼主| 发表于 2007-4-27 21:52:10 | 显示全部楼层
10.指令集

(1)CISC指令集

  CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。

要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。


虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。

(2)RISC指令集

  RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。

目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。

(3)IA-64

EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。

Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。

IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。

(4)X86-64 (AMD64 / EM64T)

AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。

x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。

而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。

应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。
睡醒了
 楼主| 发表于 2007-4-27 21:52:36 | 显示全部楼层
11.超流水线与超标量

  在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。

超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。


12.封装形式

  CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。


13、多线程

同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制处理器上的结构状态,让同一个处理器上的多个线程同步执行并共享处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT处理器几乎和传统的宽发射超标量处理器一样。SMT最具吸引力的是只需小规模改变处理器核心的设计,几乎不用增加额外的成本就可以显著地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有处理器都将支持SMT技术。

14、多核心

多核心,也指单芯片多处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。与CMP比较, SMT处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前,IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。

2005年下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。

15、SMP

SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。像双至强,也就是我们所说的二路,这是在对称处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。

构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。

为了能够使得SMP系统发挥高效的性能,操作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位操作系统。即能够进行多任务和多线程处理。多任务是指操作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指操作系统能够使得不同的CPU并行的完成同一个任务。

要组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编号,因为两个生产批次的CPU作为双处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。

16、NUMA技术

NUMA即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中,Cache 的一致性有多种解决方案,需要操作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用NUMA的技术加以扩展,是这两种技术的结合。


17、乱序执行技术

乱序执行(out-of-orderexecution),是指CPU允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。这样将根据个电路单元的状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路单元执行,在这期间不按规定顺序执行指令,然后由重新排列单元将各执行单元结果按指令顺序重新排列。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU的运行程序的速度。分枝技术:(branch)指令进行运算时需要等待结果,一般无条件分枝只需要按指令顺序执行,而条件分枝必须根据处理后的结果,再决定是否按原先顺序进行。

18、CPU内部的内存控制器

许多应用程序拥有更为复杂的读取模式(几乎是随机地,特别是当cache hit不可预测的时候),并且没有有效地利用带宽。典型的这类应用程序就是业务处理软件,即使拥有如乱序执行(out of order execution)这样的CPU特性,也会受内存延迟的限制。这样CPU必须得等到运算所需数据被除数装载完成才能执行指令(无论这些数据来自CPU cache还是主内存系统)。当前低段系统的内存延迟大约是120-150ns,而CPU速度则达到了3GHz以上,一次单独的内存请求可能会浪费200-300次CPU循环。即使在缓存命中率(cache hit rate)达到99%的情况下,CPU也可能会花50%的时间来等待内存请求的结束- 比如因为内存延迟的缘故。

你可以看到Opteron整合的内存控制器,它的延迟,与芯片组支持双通道DDR内存控制器的延迟相比来说,是要低很多的。英特尔也按照计划的那样在处理器内部整合内存控制器,这样导致北桥芯片将变得不那么重要。但改变了处理器访问主存的方式,有助于提高带宽、降低内存延时和提升处理器性能。
睡醒了
 楼主| 发表于 2007-4-27 21:56:42 | 显示全部楼层
接口类型

  我们知道,CPU 需要通过某个接口与主板连接,才能进行工作。CPU 经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前 CPU 的接口,都是针脚式接口,对应到主板上,就有相应的插槽类型。CPU 接口类型不同,在插孔数、体积、形状上都有变化,所以不能互相混用接插。

  1) Socket 775

  Socket 775 又称为 Socket T,是目前应用于 Intel LGA775 封装的 CPU 所对应的接口,目前采用此种接口的有 LGA775 封装的 Pentium 4、Pentium 4 EE、Celeron D 等 CPU。与以前的 Socket 478 接口 CPU 不同,Socket 775 接口 CPU 的底部没有传统的针脚,而代之以 775 个触点,即并非针脚式而是触点式。通过与对应的 Socket 775 插槽内的 775 根触针接触,来传输信号。Socket 775 接口,不仅能够有效提升处理器的信号强度、提升处理器频率,同时也可以提高处理器生产的良品率,降低生产成本。随着 Socket 478 的逐渐淡出,Socket 775 将成为今后所有 Intel 桌面 CPU 的标准接口。

  2) Socket 754

  Socket 754 是2003年9月 AMD 64 位桌面平台最初发布时的 CPU 接口,目前采用此接口的,有低端的 Athlon 64 和高端的 Sempron,具有 754 根 CPU 针脚。随着 Socket 939 的普及,Socket 754 最终也会逐渐淡出。

  3) Socket 939

  Socket 939 是 AMD 公司2004年6月才推出的 64 位桌面平台接口标准,目前采用此接口的,有高端的 Athlon 64 以及 Athlon 64 FX,具有 939 根 CPU 针脚。Socket 939 处理器和与过去的 Socket 940 插槽是不能混插的,但是,Socket 939 仍然使用了相同的 CPU 风扇系统模式。因此,以前用于 Socket 940 和 Socket 754 的风扇,同样可以使用在 Socket 939 处理器。

  4) Socket 940

  Socket 940 是最早发布的 AMD 64 位接口标准,具有 940 根 CPU 针脚,目前采用此接口的,有服务器/工作站所使用的 Opteron 以及最初的 Athlon 64 FX。随着新出的 Athlon 64 FX 改用 Socket 939 接口,所以 Socket 940 将会成为 Opteron 的专用接口。

  5) Socket 603

  Socket 603 的用途比较专业,应用于 Intel 方面高端的服务器/工作站平台,采用此接口的 CPU 是 Xeon MP 和早期的 Xeon,具有 603 根 CPU 针脚。Socket 603 接口的 CPU,可以兼容于 Socket 604 插槽。

  6) Socket 604

  与 Socket 603 相仿,Socket 604 仍然是应用于 Intel 方面高端的服务器/工作站平台,采用此接口的 CPU 是 533MHz 和 800MHz FSB 的 Xeon。Socket 604 接口的 CPU 不能兼容于 Socket 603 插槽。

  7) Socket 478

  Socket 478 接口是目前 Pentium 4 系列处理器所采用的接口类型,针脚数为 478 针。Socket 478 的 Pentium 4 处理器面积很小,其针脚排列极为紧密。英特尔公司的 Pentium 4 系列和 P4 赛扬系列都采用此接口。

  8) Socket A

Socket A 接口,也叫 Socket 462,是目前 AMD 公司 Athlon XP 和 Duron 处理器的插座接口。Socket A 接口具有 462 插脚,可以支持 133MHz 外频。

  9) Socket 423

  Socket 423 插槽是最初 Pentium 4 处理器的标准接口,Socket 423 的外形和前几种 Socket 类的插槽类似,对应的 CPU 针脚数为 423。Socket 423 插槽多是基于 Intel 850 芯片组主板,支持 1.3GHz~1.8GHz 的 Pentium 4 处理器。不过随着 DDR 内存的流行,英特尔又开发了支持 SDRAM 及 DDR 内存的 i845 芯片组,CPU 插槽也改成了 Socket 478,Socket 423 接口也就销声匿迹了。

  10) Socket 370

  Socket 370 架构是英特尔开发出来代替 SLOT 架构,外观上与 Socket 7 非常像,也采用零插拔力插槽,对应的 CPU 是 370 针脚。英特尔公司著名的“铜矿”和”图拉丁”系列 CPU,就是采用此种接口。

  11) SLOT 1

  SLOT 1 是英特尔公司为取代 Socket 7 而开发的 CPU 接口,并申请的专利。这样,其它厂商就无法生产 SLOT 1 接口的产品。SLOT1 接口的 CPU 不再是大家熟悉的方方正正的样子,而是变成了扁平的长方体,而且接口也变成了金手指,不再是插针形式。

  SLOT 1 是英特尔公司为 Pentium Ⅱ 系列 CPU 设计的插槽,其将 Pentium Ⅱ CPU 及其相关控制电路、二级缓存都做在一块子卡上,多数 Slot 1 主板使用 100MHz 外频。SLOT 1 的技术结构比较先进,能提供更大的内部传输带宽和 CPU 性能。此种接口已经被淘汰,市面上已无此类接口的产品。

  12) SLOT 2

  SLOT 2 用途比较专业,都采用于高端服务器及图形工作站的系统。所用的 CPU 也是很昂贵的 Xeon(至强)系列。Slot 2 与 Slot 1 相比,有许多不同。首先,Slot 2 插槽更长,CPU 本身也要大一些。其次,Slot 2 能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在当时标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ 处理器,而有了 Slot 2 设计后,可以在一台服务器中同时采用 8 个处理器。而且采用 Slot 2 接口的 Pentium Ⅱ CPU,都采用了当时最先进的 0.25 微米制造工艺。支持 SLOT 2 接口的主板芯片组有 440GX 和 450NX。

  13) SLOT A

  SLOT A 接口类似于英特尔公司的 SLOT 1 接口,供 AMD 公司的 K7 Athlon 使用。在技术和性能上,SLOT A 主板可完全兼容原有的各种外设扩展卡设备。它使用的并不是 Intel 的 P6 GTL+总线协议,而是 Digital 公司的 Alpha 总线协议 EV6。EV6 架构是较先进的架构,它采用多线程处理的点到点拓扑结构,支持 200MHz 的总线频率。


4、针脚数

  目前 CPU 都采用针脚式接口与主板相连,而不同接口的 CPU,在针脚数量上各不相同。CPU 接口类型的命名,习惯用针脚数来表示,比如,目前 Pentium 4 系列处理器所采用的 Socket 478 接口,其针脚数就为 478 针;而 Athlon XP 系列处理器所采用的 Socket 462 接口,其针脚数就为 462 针。
睡醒了
 楼主| 发表于 2007-4-27 21:58:16 | 显示全部楼层
CPU的一些基础知识及其参数  
FPU:Float Point Unit,浮点运算单元  
HL-PBGA: 表面黏著,高耐热、轻薄型塑胶球状矩阵封装  
IA:Intel Architecture,英特尔架构  
ID:identify,鉴别号码  
IMM: Intel Mobile Module, 英特尔移动模块  
KNI(Katmai New Instructions,Katmai新指令集,即MMX2)  
MMX:MultiMedia Extensions,多媒体扩展指令集  
NI:Non-Intel,非英特尔  
PGA: Pin-Grid Array(引脚网格阵列),耗电大  
PSN(Processor Serial numbers,处理器序列号)  
PIB: Processor In a Box(盒装处理器)  
PPGA(Plastic Pin Grid Array,塑胶针状矩阵封装)  
PQFP(Plastic Quad Flat Package)  
RISC(Reduced Instruction Set Computing,精简指令集计算机)  
SEC: Single Edge Connector,单边连接器  
SIMD:Single Instruction Multiple Data,单指令多数据流  
SiO2F(Fluorided Silicon Oxide,二氧氟化硅)  
SOI: Silicon-on-insulator,绝缘体硅片  
SSE(Streaming SIMD Extensions,单一指令多数据流扩充)  
BGA(Ball Grid Array,球状矩阵排列)  
CMOS: Complementary Metal Oxide Semiconductor,互补金属氧化物半导体  
CISC(Complex Instruction Set Computing,复杂指令集计算机)  
COB(Cache on board,板上集成缓存)  
COD(Cache on Die,芯片内集成缓存)  
CPGA(Ceramic Pin Grid Array,陶瓷针型栅格阵列)  
CPU:Center Processing Unit,中央处理器  
EC(Embedded Controller,微型控制器)  
FEMMS:Fast Entry/Exit Multimedia State,快速进入/退出多媒体状态  
FIFO:First Input First Output,先入先出队列  
FPU:Float Point Unit,浮点运算单元  
HL-PBGA: 表面黏著,高耐热、轻薄型塑胶球状矩阵封装  
IA:Intel Architecture,英特尔架构  
ID:identify,鉴别号码  
IMM: Intel Mobile Module, 英特尔移动模块  
KNI(Katmai New Instructions,Katmai新指令集,即MMX2)  
MMX:MultiMedia Extensions,多媒体扩展指令集  
NI:Non-Intel,非英特尔  
PGA: Pin-Grid Array(引脚网格阵列),耗电大  
PSN(Processor Serial numbers,处理器序列号)  
PIB: Processor In a Box(盒装处理器)  
PPGA(Plastic Pin Grid Array,塑胶针状矩阵封装)  
PQFP(Plastic Quad Flat Package)  
RISC(Reduced Instruction Set Computing,精简指令集计算机)  
SEC: Single Edge Connector,单边连接器  
SIMD:Single Instruction Multiple Data,单指令多数据流  
SiO2F(Fluorided Silicon Oxide,二氧氟化硅)  
SOI: Silicon-on-insulator,绝缘体硅片  
SSE(Streaming SIMD Extensions,单一指令多数据流扩充)  
TCP: Tape Carrier Package(薄膜封装),发热小  
TLBs(Translate Look side Buffers,翻译旁视缓冲器)  
VLIW(Very Long Instruction Word,超长指令字) AGP: Accelarated Graphic Port(加速图形端口),一种CPU与图形芯片的总线结构  
APIC: Advanced Programmable Interrupt Controller(高级程序中断控制器)  
BGA: Ball Grid Array(球状网格阵列)  
BTB/C: Branch Target Buffer/Cache (分支目标缓冲)  
CC: Companion Chip(同伴芯片),MediaGX系统的主板芯片组  
CISC: Complex Instruction Set Computing(复杂指令结构)  
CMOS: Complementary Metal Oxide Semiconductor(互补金属氧化物半导体)  
CP: Ceramic Package(陶瓷封装)  
CPGA: Ceramic Pin Grid Array(陶瓷针脚网格阵列)  
CPU: Centerl Processing Unit(中央处理器)  
DCT: Display Compression Technology(显示压缩技术)  
DIB: Dual Independent Bus(双重独立总线),包括L2cache总线和PTMM(Processer  
To Main Memory,CPU至主内存)总线  
DP: Dual Processing(双处理器)  
DX: 指包含数学协处理器的CPU  
ECC: Error Check Correct(错误检查纠正)
ECRS: Entry Call Return Stack(回叫堆栈),代替RAM存储返回地址.  
EPIC: Explicitly Parallel Instruction Computing(清晰平行指令计算),是一  
个64位指令集  
FPU: Floating-point Processing Unit(浮点处理单元)  
FRC: Functional Redundancy Checking (冗余功能检查,双处理器才有这项特性)  
IA: Intel Architecture(英特尔架构)  
I/O: Input/Output(输入/输出)  
IS: Internal Stack(内置堆栈)  
ISO/MPEG: International Standard Organization's Moving Picture Expert  
Group(国际标准化组织的活动图片专家组)  
L1cache: Level1(一级)高速缓存,通常是集成在CPU中的,但现在也有把L2cache  
集成在CPU中的设计,如entium2  
LB: Linear Burst(线性突发),是Cyrix 6x86采用的特殊技术.  
MADD: 乘法-加法指令  
MAG: 乘法-累加指令,两浮点相乘后再和另一浮点数相加,可显著提高3D图形运算速度  
MHz: 工作频率的单位兆赫兹(Mega Hertz),1GHz=1000MHz  
MIPS: Million Instructions per Second(每秒钟百万条指令),是CPU速度的一个参  
数,当然是越大越好  
MMX: Multimedia Extensions(这个大家应该很熟悉了,这种CPU有57新的64位指令,  
是自386以来的最大变化,另外还有SIMD架构等)  
MPGA: Micro PGA,散热和体积都比TCP小  
PGA: Pin Grid Array(引脚网格阵列),耗电大,适用用台式机  
pin: CPU的针脚  
PLL: Phase Lock Loop(阶段锁定)  
PR: P-rating,是一种额定性能指数,以Winstone 96测试为基本(PR2用Winstone97),  
如PR-75即相当于奔腾75  
RISC: Reduced Instruction Set Computing(精简指令结构),是相对于CISC而言的  
ROB: Reorder Buffer(重新排序缓冲区)  
SC: Static Core(静态内核)  
SEC: Single Edge Contact(单边接触盒),是Intel的Pentium2CPU封装盒  
Slot 1: Pentium2的主板结构形式,外部总线频率66MHz  
Slot 2: Intel下一代芯片插座,处部总线频率达100MHz以上,有更大的SEC,主要用途是  
服务器,同时可安装4个CPU  
SMM: System Management Mode(系统管理模式),是一种节能模式  
Socket 7: 奔腾级(经典Pentium和P55C)CPU的插座,外部总线频率83.3MHz  
Socket 8: 高能奔腾级CPU的插座,外部总线频率66MHz  
SP: Scratch Pad(高速暂存区)  
SRR: Segment Register Rewrite(区段寄存器重写)  
SRAM: Static Random Access Memory(静态随机存储器)  
SUPER-7: 增加形Socket 7,外部总线频率100MHz,AGP,L2/L3cache,PC98,100MHzSDRAM  
SX: 指无数学协处理器的CPU  
TCP: Tape Carrier Package(薄膜封装),发热小,适用于笔记本式电脑.  
TLB: Translation Look side Buffer(翻译旁视缓冲器)  
VMA: Unified Memory Architecture(统一内存架构),系统内存和显示内存用  
Vcc2 为CPU内部磁心提供电压  
Vcc3(CLK) 为CPU的输入和输出信号提供电压  
VLIW: Very Long Instruction Word(极长指令字)  
VRE: Voltage Reduction Enhance(增强形电压调节)  
VSA: Virtual System Architecture(虚拟系统架构)  
Write-Back(写回): 是L1cache一种工作方式  
Write-Though(写通): 是L1cache一种工作方式  
WHQL: Microsoft Windows Hardware Quality Lab(微软公司视窗硬件质量实验室
睡醒了
 楼主| 发表于 2007-4-27 22:00:03 | 显示全部楼层
如何识别和判断假冒(Remark)的CPU
什么是假冒(Remark)的CPU?即将相同工艺系列的CPU,把速度较慢的型号用机器将商标和型号磨掉,再以激光蚀刻的技术,打上速度较高CPU的型号、序号以及较快速度的规格,甚至将不同品牌的CPU,打上知名度较高品牌的CPU,此种过程即为假冒(Remark),其目的不外乎赚取中间的差价。
如何判断假冒(Remark)的CPU?以下几点供您参考:
◎要假冒(Remark)CPU,其必备条件是接脚相同的CPU。
◎当您的电脑老是死机,很有可能是假冒的CPU。
◎假冒(Remark)的CPU其厚度较薄,表面光滑度不均,CPU的第一脚,深度较浅。
◎假冒(Remark)的CPU有时会以散热铝片和风扇加以掩。
◎假冒(Remark)的CPU其印刷字体会有透散和晕开的现象。
◎假冒(Remark)的CPU其激光蚀刻的字的深度和字体,会与原厂的深度和字体不符。
◎有些厂商从内部电路下手,焊开正面或背面的外壳,修改内部的锁频电路,改为较高频的CPU,因此也可从内部电路,查视其型号、规格、序号来识别其真伪。
◎假冒(Remark)的CPU在相同的主板,相同的环境下超频时会死机或开不了机。
◎检查纸盒封袋的CPU,对比其纸质、颜色、标签、内外的料号,序号,仔细对比检查,总不难找出蜘丝马迹。
◎当您到电脑一条街,经过比价,价格相差很大,而且心里非常高兴的时候,假冒(Remark)就写在价格上。
◎不怕不识货,只怕货比货,找一块批号、日期相近的CPU,到文具店买一个放大,对比对比,察看本尊与分身,是否有不一样的地方。
◎使用Intel公司专用的CPU测试软件,即可显示其型号。
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

手机版|杀毒软件|软件论坛| 卡饭论坛

Copyright © KaFan  KaFan.cn All Rights Reserved.

Powered by Discuz! X3.4( 沪ICP备2020031077号-2 ) GMT+8, 2025-1-22 15:40 , Processed in 0.120807 second(s), 18 queries .

卡饭网所发布的一切软件、样本、工具、文章等仅限用于学习和研究,不得将上述内容用于商业或者其他非法用途,否则产生的一切后果自负,本站信息来自网络,版权争议问题与本站无关,您必须在下载后的24小时之内从您的电脑中彻底删除上述信息,如有问题请通过邮件与我们联系。

快速回复 客服 返回顶部 返回列表